viernes, 5 de junio de 2015
Ejercicios
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.
Elementos de la elipse:
1Focos: Son los puntos fijos F y F'.
2Eje focal: Es la recta que pasa por los focos.
3Eje secundario: Es la mediatriz del segmento FF'.
4Centro: Es el punto de intersección de los ejes.
5Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'.
6Distancia focal: Es el segmento de longitud 2c, c es el valor de la semidistancia focal.
7Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'.
8Eje mayor: Es el segmento de longitud 2a, a es el valor del semieje mayor.
9Eje menor:Es el segmento de longitud 2b, b es el valor del semieje menor.
10Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor.
11Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.
Relación entre la distancia focal y los semiejes
LA ELIPSE
CONCEPTO
La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante.
Una elipse es la curva simétrica cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado. La elipse es también la imagen afin de una circunferencia.
Puntos de una elipse[editar]
Los focos de la elipse son dos puntos equidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor (d(P,F1)+d(P,F2)=2a).
Por comodidad denotaremos por PQ la distancia entre dos puntos P y Q.
Si F1 y F2 son dos puntos de un plano, y 2a es una constante mayor que la distancia F1F2, un punto P pertenecerá a la elipse si se cumple la relación:
donde es la medida del semieje mayor de la elipse.
Ejes de una elipse[editar]
El eje mayor, 2a, es la mayor distancia entre dos puntos opuestos de la elipse. El resultado de la suma de las distancias de cualquier punto a los focos es constante y equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos opuestos de la elipse. Los ejes de la elipse son perpendicularesentre sí.
Excentricidad de una elipse[editar]
La excentricidad ε (épsilon) de una elipse es la razón entre su semidistancia focal (longitud del segmento que parte del centro de la elipse y acaba en uno de sus focos), denominada por la letra c, y su semieje mayor. Su valor se encuentra entre cero y uno.
Dado que , también vale la relación: , con
o el sistema:
La excentricidad indica la forma de una elipse; una elipse será más redondeada cuanto más se aproxime su excentricidad al valor cero.4 La designación tradicional de la excentricidad es la letra griega ε llamada épsilon.
(No se debe usar la letra e para designarla, porque se reserva para la base de los logaritmos naturales o neperianos. Véase: número e).
Excentricidad angular de una elipse[editar]
La excentricidad angular es el ángulo para el cual el valor de la función trigonométrica seno concuerda con la excentricidad , esto es:
Constante de la elipse[editar]
Como establece la definición inicial de la elipse como lugar geométrico, para todos los puntos P de la elipse la suma de las longitudes de sus dos radio vectores es una cantidad constante igual a la longitud 2a del eje mayor:En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes a cada uno son PF1 (color azul) y PF2 (color rojo), y en la animación se ilustra como varían para diversos puntos P de la elipse.
- PF1 + PF2 = 2a
En la elipse de la imagen 2a vale 10 y se ilustra, para un conjunto selecto de puntos, cómo se cumple la definición.
Directrices de la elipse[editar]
Cada foco F de la elipse está asociado con una recta paralela al semieje menor llamada directriz (ver ilustración de la derecha). La distancia de cualquier punto P de la elipse hasta el foco F es una fracción constante de la distancia perpendicular de ese punto P a la directriz que resulta en la igualdad:
La relación entre estas dos distancias es la excentricidad de la elipse. Esta propiedad (que puede ser probada con la herramienta esferas de Dandelin) puede ser tomada como otra definición alternativa de la elipse.
Suscribirse a:
Entradas (Atom)